Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.152
Filtrar
1.
Environ Monit Assess ; 196(5): 438, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592580

RESUMO

Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.


Assuntos
Inteligência Artificial , Internet das Coisas , Computação em Nuvem , Monitoramento Ambiental , Agricultura , Inteligência , Solo , Água , Abastecimento de Água
2.
BMJ Open Respir Res ; 11(1)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580439

RESUMO

BACKGROUND: Despite substantial progress in reducing the global burden of chronic obstructive pulmonary disease (COPD), traditional methods to promote understanding and management of COPD are insufficient. We developed an innovative model based on the internet of things (IoT) for screening and management of COPD in primary healthcare (PHC). METHODS: Electronic questionnaire and IoT-based spirometer were used to screen residents. We defined individuals with a questionnaire score of 16 or higher as high-risk population, COPD was diagnosed according to 2021 Global Initiative for COPD (Global Initiative for Chronic Obstructive Lung Disease) criteria. High-risk individuals and COPD identified through the screening were included in the COPD PHC cohort study, which is a prospective, longitudinal observational study. We provide an overall description of the study's design framework and baseline data of participants. RESULTS: Between November 2021 and March 2023, 162 263 individuals aged over 18 from 18 cities in China were screened, of those 43 279 high-risk individuals and 6902 patients with COPD were enrolled in the cohort study. In the high-risk population, the proportion of smokers was higher than that in the screened population (57.6% vs 31.4%), the proportion of males was higher than females (71.1% vs 28.9%) and in people underweight than normal weight (57.1% vs 32.0%). The number of high-risk individuals increased with age, particularly after 50 years old (χ2=37 239.9, p<0.001). Female patients are more common exposed to household biofuels (χ2=72.684, p<0.05). The majority of patients have severe respiratory symptoms, indicated by a CAT score of ≥10 (85.8%) or an Modified Medical Research Council Dyspnoea Scale score of ≥2 (65.5%). CONCLUSION: Strategy based on IoT model help improve the detection rate of COPD in PHC. This cohort study has established a large clinical database that encompasses a wide range of demographic and relevant data of COPD and will provide invaluable resources for future research.


Assuntos
Internet das Coisas , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos de Coortes , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/terapia , Atenção Primária à Saúde
3.
PLoS One ; 19(4): e0299080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635556

RESUMO

This study investigates the positive coupling between the sports industry and tourism, exploring the ways to promote their interconnection. Under state guidance, the integration of sports industry services is facilitated to attract sports culture and tourism fairs, leveraging regional economic development advantages to enhance the industrial market appeal. The emerging leisure consumption mode of sports tourism injects vitality into the economy, fostering the core sports service industry. The coupling of the education and tourism sectors is strategically aligned with long-term national policies. Using IoT technology, this paper employs a grey relational analysis to assess the coupling between the sports industry and tourism, revealing a significant correlation. Experimental results demonstrate a positive coupling trend, likened to conjoined twins with a natural material basis and technical support. This coupling not only aligns with industry trends but also resonates with the "environmental protection era," "green era," and "ecological era," marking a pivotal aspect of industrial development. The study contributes valuable insights into the symbiotic relationship between the sports and tourism industries, emphasizing their interconnectedness and the positive implications for economic and environmental sustainability.


Assuntos
Internet das Coisas , Esportes , Turismo , Indústrias , Desenvolvimento Industrial , Desenvolvimento Econômico , China
4.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610241

RESUMO

People living alone encounter well-being challenges due to unnoticed personal situations. Thus, it is essential to monitor their activities and encourage them to adopt healthy lifestyle habits without imposing a mental burden, aiming to enhance their overall well-being. To realize such a support system, its components should be simple and loosely coupled to handle various internet of things (IoT)-based smart home applications. In this study, we propose an exercise promotion system for individuals living alone to encourage them to adopt good lifestyle habits. The system comprises autonomous IoT devices as agents and is realized using an agent-oriented IoT architecture. It estimates user activity via sensors and offers exercise advice based on recognized conditions, surroundings, and preferences. The proposed system accepts user feedback to improve status estimation accuracy and offers better advice. The proposed system was evaluated from three perspectives through experiments with subjects. Initially, we demonstrated the system's operation through agent cooperation. Then, we showed it adapts to user preferences within two weeks. Third, the users expressed satisfaction with the detection accuracy regarding their stay-at-home status and the relevance of the advice provided. They were also motivated to engage in exercise based on a subjective evaluation, as indicated by preliminary results.


Assuntos
Internet das Coisas , Humanos , Estilo de Vida , Exercício Físico , Hábitos , Estilo de Vida Saudável
5.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610389

RESUMO

As the Internet of Things (IoT) becomes more widespread, wearable smart systems will begin to be used in a variety of applications in people's daily lives, not only requiring the devices to have excellent flexibility and biocompatibility, but also taking into account redundant data and communication delays due to the use of a large number of sensors. Fortunately, the emerging paradigms of near-sensor and in-sensor computing, together with the proposal of flexible neuromorphic devices, provides a viable solution for the application of intelligent low-power wearable devices. Therefore, wearable smart systems based on new computing paradigms are of great research value. This review discusses the research status of a flexible five-sense sensing system based on near-sensor and in-sensor architectures, considering material design, structural design and circuit design. Furthermore, we summarize challenging problems that need to be solved and provide an outlook on the potential applications of intelligent wearable devices.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Comunicação , Inteligência , Percepção
6.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610331

RESUMO

Recent advancements in the Internet of Things (IoT) wearable devices such as wearable inertial sensors have increased the demand for precise human activity recognition (HAR) with minimal computational resources. The wavelet transform, which offers excellent time-frequency localization characteristics, is well suited for HAR recognition systems. Selecting a mother wavelet function in wavelet analysis is critical, as optimal selection improves the recognition performance. The activity time signals data have different periodic patterns that can discriminate activities from each other. Therefore, selecting a mother wavelet function that closely resembles the shape of the recognized activity's sensor (inertial) signals significantly impacts recognition performance. This study uses an optimal mother wavelet selection method that combines wavelet packet transform with the energy-to-Shannon-entropy ratio and two classification algorithms: decision tree (DT) and support vector machines (SVM). We examined six different mother wavelet families with different numbers of vanishing points. Our experiments were performed on eight publicly available ADL datasets: MHEALTH, WISDM Activity Prediction, HARTH, HARsense, DaLiAc, PAMAP2, REALDISP, and HAR70+. The analysis demonstrated in this paper can be used as a guideline for optimal mother wavelet selection for human activity recognition.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Entropia , Atividades Humanas
7.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610485

RESUMO

The multi-layered negative effects caused by pollutants released into the atmosphere as a result of fires served as the stimulus for the development of a system that protects the health of firefighters operating in the affected area. A collaborative network comprising mobile and stationary Internet of Things (IoT) devices that are furnished with gas sensors, along with a remote server, constructs a resilient framework that monitors the concentrations of harmful emissions, characterizes the ambient air quality of the vicinity where the fire transpires, adopting European Air Quality levels, and communicates the outcomes via suitable applications (RESTful APIs and visualizations) to the stakeholders responsible for fire management decision making. Different experimental evaluations adopting separate contexts illustrate the operation of the infrastructure.


Assuntos
Poluentes Ambientais , Bombeiros , Internet das Coisas , Humanos , Atmosfera , Computadores
9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 228-231, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605627

RESUMO

The design and development of electrocardiogram(ECG) monitoring cloud platform based on the Internet of Things(IoT) electrocardiograph is introduced. The platform is mainly composed of ECG acquisition module, algorithm module, diagnostic model comparison module, warning module, positioning module and medical aid system. The ECG acquisition module collects ECG signals of patients and displays them in real time on the mobile terminals. Then they are uploaded to the ECG monitoring cloud platform through the IoT. The algorithm module and the diagnostic model comparison module mark, process, analyze and diagnose the ECG. Meanwhile, the ECG diagnosis and warning results are pushed to patients and 120 emergency centers through the IoT. Furthermore, the cloud platform will guide patients to self-rescue and the emergency platform will open the green channel to save patients in time.The platform realizes from the onset to diagnosis and treatment in one step, and saves lives against time.


Assuntos
Computação em Nuvem , Internet das Coisas , Humanos , Eletrocardiografia , Algoritmos , Internet
10.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 232-236, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605628

RESUMO

In order to realize the diagnosis of slit lamp in cross-regional patients and improve the real-time and convenience of diagnosis, a remote slit lamp diagnosis platform based on Internet of Things (IoT) technology is designed. Firstly, the feasibility of remote slit lamp is analyzed. Secondly, the IoT platform architecture of doctor/server/facility (D/S/F) is proposed and a remote slit lamp is designed. Finally, the performance of the remote slit lamp diagnostic platform is tested. The platform solves the communication problem of distributed slit lamps and realizes respectively numerical control of multi-area slit lamp by multi-eye experts. The test results show that the remote control delay of the platform is less than 20 ms, which supports multiple experts to diagnose multiple patients separately.


Assuntos
Internet das Coisas , Lâmpada de Fenda , Humanos , Tecnologia
11.
PLoS One ; 19(4): e0298534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635843

RESUMO

The Internet of Things (IoT) is gradually changing the way teaching and learning take place in on-campus programs. In particular, face capture services improve student concentration to create an efficient classroom atmosphere by using face recognition algorithms that support end devices. However, reducing response latency and executing face analysis services effectively in real-time is still challenging. For this reason, this paper proposed a pedagogical model of face recognition for IoT devices based on edge computing (TFREC). Specifically, this research first proposed an IoT service-based face capture algorithm to optimize the accuracy of face recognition. In addition, the service deployment method based on edge computing is proposed in this paper to obtain the best deployment strategy and reduce the latency of the algorithm. Finally, the comparative experimental results demonstrate that TFREC has 98.3% accuracy in face recognition and 72 milliseconds in terms of service response time. This research is significant for advancing the optimization of teaching methods in school-based courses, meanwhile, providing beneficial insights for the application of face recognition and edge computing in the field of education.


Assuntos
Internet das Coisas , Humanos , Internet , Escolaridade , Computadores , Tecnologia
12.
PLoS One ; 19(3): e0295190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507364

RESUMO

In the Internet of Things (IoT), there are often devices that are computationally too constrained to establish a security key using traditional key distribution mechanisms such as those based on the Diffie-Hellman key exchange. To address this, current solution commonly rely on key predistribution schemes (KPSs). Among KPSs, the Blom scheme provably provides the highest resilience against node capture attacks. This, however, comes at high computational overhead, because the Blom scheme requires many multiplications over a large finite field. To overcome this computational overhead, we present TurboBlom, a novel amendment of the Blom scheme. TurboBlom circumvents the need for field multiplications by utilizing specialized generator matrices, such as random zero-one matrices. We demonstrate that, through this approach, TurboBlom can significantly reduce the computational overhead of the Blom scheme by orders of magnitude. In our next key finding, we demonstrate that TurboBlom offers a level of resilience against node capture that is virtually on par with the Blom scheme. Notably, we prove that the gap between the resilience of the two schemes is exponentially small. These features of TurboBlom (i.e., low computational overhead and high resilience) make it suitable for computationally constrained devices. Such devices exist in abundance in IoT, for example, as part of Low Power and Lossy Networks (LLNs). To demonstrate a sample application of TurboBlom, we show how to use it to enable sender authentication in the Routing Protocol for LLNs (RPL), a standard routing protocol for IoT.


Assuntos
Internet das Coisas , Resiliência Psicológica , Internet
13.
PLoS One ; 19(3): e0301294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547096

RESUMO

Egypt is among the world's largest producers of sugarcane. This crop is of great economic importance in the country, as it serves as a primary source of sugar, a vital strategic material. The pre-cutting planting mode is the most used technique for cultivating sugarcane in Egypt. However, this method is plagued by several issues that adversely affect the quality of the crop. A proposed solution to these problems is the implementation of a sugarcane-seed-cutting device, which incorporates automatic identification technology for optimal efficiency. The aim is to enhance the cutting quality and efficiency of the pre-cutting planting mode of sugarcane. The developed machine consists of a feeding system, a node scanning and detection system, a node cutting system, a sugarcane seed counting and monitoring system, and a control system. The current research aims to study the pulse widths (PW) of three-color channels (R, G, and B) of the RGB color sensors under laboratory conditions. The output PW of red, green, and blue channel values were recorded at three color types for hand-colored nodes [black, red, and blue], three speeds of the feeding system [7.5 m/min, 5 m/min, and 4.3 m/min], three installing heights of the RGB color sensors [2.0 cm, 3.0 cm, and 4.0 cm], and three widths of the colored line [10.0 mm, 7.0 mm, and 3.0 mm]. The laboratory test results s to identify hand-colored sugarcane nodes showed that the recognition rate ranged from 95% to 100% and the average scanning time ranged from 1.0 s to 1.75 s. The capacity of the developed machine ranged up to 1200 seeds per hour. The highest performance of the developed machine was 100% when using hand-colored sugarcane stalks with a 10 mm blue color line and installing the RGB color sensor at 2.0 cm in height, as well as increasing the speed of the feeding system to 7.5 m/min. The use of IoT and RGB color sensors has made it possible to get analytical indicators like those achieved with other automatic systems for cutting sugar cane seeds without requiring the use of computers or expensive, fast industrial cameras for image processing.


Assuntos
Internet das Coisas , Saccharum , Processamento de Imagem Assistida por Computador , Tecnologia , Sementes
14.
JMIR Public Health Surveill ; 10: e46903, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506901

RESUMO

BACKGROUND: The COVID-19 pandemic necessitated public health policies to limit human mobility and curb infection spread. Human mobility, which is often underestimated, plays a pivotal role in health outcomes, impacting both infectious and chronic diseases. Collecting precise mobility data is vital for understanding human behavior and informing public health strategies. Google's GPS-based location tracking, which is compiled in Google Mobility Reports, became the gold standard for monitoring outdoor mobility during the pandemic. However, indoor mobility remains underexplored. OBJECTIVE: This study investigates in-home mobility data from ecobee's smart thermostats in Canada (February 2020 to February 2021) and compares it directly with Google's residential mobility data. By assessing the suitability of smart thermostat data, we aim to shed light on indoor mobility patterns, contributing valuable insights to public health research and strategies. METHODS: Motion sensor data were acquired from the ecobee "Donate Your Data" initiative via Google's BigQuery cloud platform. Concurrently, residential mobility data were sourced from the Google Mobility Report. This study centered on 4 Canadian provinces-Ontario, Quebec, Alberta, and British Columbia-during the period from February 15, 2020, to February 14, 2021. Data processing, analysis, and visualization were conducted on the Microsoft Azure platform using Python (Python Software Foundation) and R programming languages (R Foundation for Statistical Computing). Our investigation involved assessing changes in mobility relative to the baseline in both data sets, with the strength of this relationship assessed using Pearson and Spearman correlation coefficients. We scrutinized daily, weekly, and monthly variations in mobility patterns across the data sets and performed anomaly detection for further insights. RESULTS: The results revealed noteworthy week-to-week and month-to-month shifts in population mobility within the chosen provinces, aligning with pandemic-driven policy adjustments. Notably, the ecobee data exhibited a robust correlation with Google's data set. Examination of Google's daily patterns detected more pronounced mobility fluctuations during weekdays, a trend not mirrored in the ecobee data. Anomaly detection successfully identified substantial mobility deviations coinciding with policy modifications and cultural events. CONCLUSIONS: This study's findings illustrate the substantial influence of the Canadian stay-at-home and work-from-home policies on population mobility. This impact was discernible through both Google's out-of-house residential mobility data and ecobee's in-house smart thermostat data. As such, we deduce that smart thermostats represent a valid tool for facilitating intelligent monitoring of population mobility in response to policy-driven shifts.


Assuntos
COVID-19 , Internet das Coisas , Humanos , Pandemias , Ferramenta de Busca , COVID-19/epidemiologia , Alberta/epidemiologia , Política de Saúde
15.
Sci Rep ; 14(1): 6151, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486038

RESUMO

Regular monitoring of blood glucose levels is essential for the management of diabetes and the development of appropriate treatment protocols. The conventional blood glucose (BG) testing have an intrusive technique to prick the finger and it can be uncomfortable when it is a regular practice. Intrusive procedures, such as fingerstick testing has negatively influencing patient adherence. Diabetic patients now have an exceptional improvement in their quality of life with the development of cutting-edge sensors and healthcare technologies. intensive care unit (ICU) and pregnant women also have facing challenges including hyperglycemia and hypoglycemia. The worldwide diabetic rate has incited to develop a wearable and accurate non-invasive blood glucose monitoring system. This research developed an Internet of Things (IoT) - enabled wearable blood glucose monitoring (iGM) system to transform diabetes care and enhance the quality of life. The TTGOT-ESP32 IoT platform with a red and near-infrared (R-NIR) spectral range for blood glucose measurement has integrated into this wearable device. The primary objective of this gadget is to provide optimal comfort for the patients while delivering a smooth monitoring experience. The iGM gadget is 98.82 % accuracy when used after 10 hours of fasting and 98.04 % accuracy after 2 hours of breakfast. The primary objective points of the research were continuous monitoring, decreased risk of infection, and improved quality of life. This research contributes to the evolving field of IoT-based healthcare solutions by streaming real-time glucose values on AWS IoT Core to empower individuals with diabetes to manage their conditions effectively. The iGM Framework has a promising future with the potential to transform diabetes management and healthcare delivery.


Assuntos
Diabetes Mellitus , Internet das Coisas , Humanos , Feminino , Gravidez , Glicemia , Automonitorização da Glicemia/métodos , Qualidade de Vida , Diabetes Mellitus/terapia , Imunoglobulina M
16.
PLoS One ; 19(3): e0296655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517840

RESUMO

The Internet of Things (IoT) has become one of the most popular technologies in recent years. Advances in computing capabilities, hardware accessibility, and wireless connectivity make possible communication between people, processes, and devices for all kinds of applications and industries. However, the deployment of this technology is confined almost entirely to tech companies, leaving end users with only access to specific functionalities. This paper presents a framework that allows users with no technical knowledge to build their own IoT applications according to their needs. To this end, a framework consisting of two building blocks is presented. A friendly interface block lets users tell the system what to do using simple operating rules such as "if the temperature is cold, turn on the heater." On the other hand, a fuzzy logic reasoner block built by experts translates the ambiguity of human language to specific actions to the actuators, such as "call the police." The proposed system can also detect and inform the user if the inserted rules have inconsistencies in real time. Moreover, a formal model is introduced, based on fuzzy description logic, for the consistency of IoT systems. Finally, this paper presents various experiments using a fuzzy logic reasoner to show the viability of the proposed framework using a smart-home IoT security system as an example.


Assuntos
Utensílios Domésticos , Internet das Coisas , Humanos , Lógica Fuzzy , Temperatura Baixa , Comunicação
17.
Artif Intell Med ; 151: 102850, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555849

RESUMO

The ongoing digital revolution in the healthcare sector, emphasized by bodies like the US Food and Drug Administration (FDA), is paving the way for a shift towards person-centric healthcare models. These models consider individual needs, turning patients from passive recipients to active participants. A key factor in this shift is Artificial Intelligence (AI), which has the capacity to revolutionize healthcare delivery due to its ability to personalize it. With the rise of software in healthcare and the proliferation of the Internet of Things (IoT), a surge of digital data is being produced. This data, alongside improvements in AI's explainability, is facilitating the spread of person-centric healthcare models, aiming at improving health management and patient experience. This paper outlines a human-centered methodology for the development of an AI-as-a-service platform with the goal of broadening access to personalized healthcare. This approach places humans at its core, aiming to augment, not replace, human capabilities and integrate in current processes. The primary research question guiding this study is: "How can Human-Centered AI principles be considered when designing an AI-as-a-service platform that democratizes access to personalized healthcare?" This informed both our research direction and investigation. Our approach involves a design fiction methodology, engaging clinicians from different domains to gather their perspectives on how AI can meet their needs by envisioning potential future scenarios and addressing possible ethical and social challenges. Additionally, we incorporate Meta-Design principles, investigating opportunities for users to modify the AI system based on their experiences. This promotes a platform that evolves with the user and considers many different perspectives.


Assuntos
Inteligência Artificial , Humanos , Medicina de Precisão/métodos , Atenção à Saúde/organização & administração , Assistência Centrada no Paciente/organização & administração , Internet das Coisas
18.
Chem Soc Rev ; 53(8): 3774-3828, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38433614

RESUMO

More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.


Assuntos
COVID-19 , Internet das Coisas , Nanoestruturas , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Nanoestruturas/química , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Teste para COVID-19/métodos
19.
Sci Rep ; 14(1): 5872, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467709

RESUMO

Internet of Things (IoT) integration in healthcare improves patient care while also making healthcare delivery systems more effective and economical. To fully realize the advantages of IoT in healthcare, it is imperative to overcome issues with data security, interoperability, and ethical considerations. IoT sensors periodically measure the health-related data of the patients and share it with a server for further evaluation. At the server, different machine learning algorithms are applied which help in early diagnosis of diseases and issue alerts in case vital signs are out of the normal range. Different cyber attacks can be launched on IoT devices which can result in compromised security and privacy of applications such as health care. In this paper, we utilize the publicly available Canadian Institute for Cybersecurity (CIC) IoT dataset to model machine learning techniques for efficient detection of anomalous network traffic. The dataset consists of 33 types of IoT attacks which are divided into 7 main categories. In the current study, the dataset is pre-processed, and a balanced representation of classes is used in generating a non-biased supervised (Random Forest, Adaptive Boosting, Logistic Regression, Perceptron, Deep Neural Network) machine learning models. These models are analyzed further by eliminating highly correlated features, reducing dimensionality, minimizing overfitting, and speeding up training times. Random Forest was found to perform optimally across binary and multiclass classification of IoT Attacks with an approximate accuracy of 99.55% under both reduced and all feature space. This improvement was complimented by a reduction in computational response time which is essential for real-time attack detection and response.


Assuntos
Internet das Coisas , Humanos , Canadá , Academias e Institutos , Aprendizado de Máquina , Atenção à Saúde
20.
Sci Rep ; 14(1): 5878, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467735

RESUMO

Assistive powered wheelchairs will bring patients and elderly the ability of remain mobile without the direct intervention from caregivers. Vital signs from users can be collected and analyzed remotely to allow better disease prevention and proactive management of health and chronic conditions. This research proposes an autonomous wheelchair prototype system integrated with biophysical sensors based on Internet of Thing (IoT). A powered wheelchair system was developed with three biophysical sensors to collect, transmit and analysis users' four vital signs to provide real-time feedback to users and clinicians. A user interface software embedded with the cloud artificial intelligence (AI) algorithms was developed for the data visualization and analysis. An improved data compression algorithm Minimalist, Adaptive and Streaming R-bit (O-MAS-R) was proposed to achieve a higher compression ratio with minimum 7.1%, maximum 45.25% compared with MAS algorithm during the data transmission. At the same time, the prototype wheelchair, accompanied with a smart-chair app, assimilates data from the onboard sensors and characteristics features within the surroundings in real-time to achieve the functions including obstruct laser scanning, autonomous localization, and point-to-point route planning and moving within a predefined area. In conclusion, the wheelchair prototype uses AI algorithms and navigation technology to help patients and elderly maintain their independent mobility and monitor their healthcare information in real-time.


Assuntos
Internet das Coisas , Cadeiras de Rodas , Humanos , Idoso , Inteligência Artificial , Algoritmos , Software , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...